Cyberrisiken im Stromnetz

Energiewende und neue Risiken

Linz, 3.10.2023

Stephan Gerling

Senior Security Researcher Kaspersky ICS-CERT

@ObiWan666

Kaspersky ICS CERT: key facts

Established in 2016

The first ICS CERT created by a commercial organization

CVE Numbering Authority (CNA)

Who we are

A global project by Kaspersky to coordinate the efforts of industrial automation system vendors and industrial facility owners and operators.

More than 30 experts in ICS threat and vulnerability research, incident response and security analysis

<u>**Renewable energy**</u> - is energy derived from natural sources that are replenished at a higher rate than they are consumed. Sunlight and wind, for example, are such sources that are constantly being replenished. Renewable energy sources are plentiful and all around us.

risks/threats

1. Code Security and misconfiguration

- 2. Unsecured API's
- 3. SCADA Systems
- 4. Automation
- 5. Remote Control
- 6. Physical location/security
- 7. Network or Data traffic
- 8. Internet connectivity
- 9. Old infrastructure
- 10. Missing regulations

Everything is connected

Grid frequency is used as base metric

Solar Power

But how is the Grid working?

A quick view

Interconnected Network of continental Europe (entso-e) https://www.entsoe.eu/data/map/downloads/

Picture source: (https://www.mainsfrequency.com/index.htm)

grid frequency levels

Frequency	Action		load sum		activation
51,5 Hz	all renewable energy o	lisconnected from	grid	100%	automatic
50,2 Hz 50,1 Hz 50,0 Hz 49,9 Hz	starting of demand side m no action Baseline no action	anagement of renew	vable energy		automatic
49,8 Hz	immediately activating +c	manual/automatic			
49,0 Hz 48,8 Hz 48,6 Hz 48,4 Hz	load shedding LEVEL 1, load shedding LEVEL 2, load shedding LEVEL 3, load shedding LEVEL 4,	10-15 % 10-15 % 10-15 % 10-15 %	ca. 12,5 % ca. 25,0 % ca. 37,5 % ca. 50,0 %		automatic automatic automatic automatic

47,5 Hz disconnecting power plants from grid

automatic

"load shedding" & Cyber risk

11

Load shedding

Communication via:

- TETRA
- Radio signal
- <u>Powerline</u> <u>communication</u>

No encryption in protocol

Only 3 Radio stations for entire Europe

- Mainflingen, 129,1kHz (DCF49)
- Burg, 139kHz (DCF39)
- Lakihegy 135,6kHz (HGA22)

100kW 50kW 100kW

https://www.ptb.de/cms/en/ptb/fachabteilungen/abt4/fb-44/ag-442/dissemination-of-legal-time/dcf77/localizacion-del-transmisor.html https://www.google.de/maps/search/mainflingen+sendeanlage/@50.0162799.9.0079328.1486m/data=!3m1!1e3

Is TETRA secure?

TETRA MANAGED SERVICES AGREEMENT FOR xxx xxxx GMBH

xxx relies on its _____ IP network, not only for critical communications but also for grid automation and remote meter reading.

It is therefore essential, that its communications platform is always 100 per cent operational, efficient, reliable and secure. xxx knew it could trust xxxxxx Solutions' TETRA network

(source: hxxps://www.somevendor.com/xxxxxxxx.pdf)

RF signal

Build your own RF receiverAntenna:Just one meter of copper wire on balcony

Receiver: RTL-SDR (DVB-T) ~20 € (https://www.rtl-sdr.com/buy-rtl-sdr-dvb-t-dongles/)

Computer Laptop works, RaspberryPi possible

Software: Linux Mint TETRA live Monitor https://github.com/sq5bpf/telive

> or OSMO-Tetra https://github.com/osmocom/osmo-tetra

And capture a couple of days

Control frames are send unencrypted

20181221 15:43:26 FUNC:SDSDEC [CPTI:1 CalledSSI:9600005 CallingSSI:9600000 CallingEXT:0 UserData4: len:128 protoid:C0 (Teltronic) SDS-TL:[MsgType:SDS-TRANSFER MSG_REF:164 T0_GROUP:1] DATA:[\$H1080E6016716]] RX:1 20181221 15:43:26 FUNC:D-SDS DATA SSI:09600005 IDX:000 IDT:1 ENCR:0 RX:1

use wireshark IEC 60870-5-101 Protocol Dissector

		d tetra_001.pcapng					
	E	<u>Eile E</u> dit <u>V</u> iew <u>G</u>	o <u>C</u> apture <u>A</u> r	nalyze <u>S</u> tatistics	Telephony	<u>W</u> ireless <u>T</u> ools	<u>H</u> elp
	4	🕻 🔳 🔬 💿]	ि 🔀 🖸 🍳	🗢 🔿 🗟 👔 🤉	₺ 🔲 🗏	ର୍ପ୍ 🔍 🎹	
		Apply a display filter	<ctrl-></ctrl->				
Wireshark · Protokolle aktivieren		ne	Source	Destination	Protocol Ler	ngth Info	
-		55.000000.	10.2.2.2	10.1.1.1	IEC101	60 ACK:positive	ack. CFM
		68.000000	10.2.2.2	10.1.1.1	IEC101	60	
Suchen: liec		76.000000.	10.2.2.2	10.1.1.1	IEC101	60 ACK:positive	ack. CFM
		872.000000	10.2.2.2	10.1.1.1	IEC101	79	
Protokoll	Beschreibung	873.000000	10.2.2.2	10.1.1.1	IEC101	60 ACK:positive	ack. CFM
HSR	High-availability Seamless Re	dund ^{902.000000}	10.2.2.2	10.1.1.1	IEC101	79	
	LICD (DDD Summer initian (IEC624	903.000000.	10.2.2.2	10.1.1.1	IEC101	60 ACK:positive	ack. CFM
M HSK_PKP_SUPERVISION	HSR/PRP Supervision (IEC024	39 Pa			TECADA	70	
✓ IDRP	ISO/IEC 10747 (1993): Inter Do	omain ^{ne} 13: 79 by	/tes on wire (632 bits), 79 l	bytes captu	ured (632 bits) o	on interface 0 (outbo
IEC 60870-5-101	IEC 60870-5-101	ernet II, Si	·c: 0a:02:02:0	02:02:02 (0a:02	:02:02:02:0	02), Dst: 0a:02:0	2:02:02:01 (0a:02:02
IFC 60870-5-101/104 ASDU	C 60870-5-101/104 ASDU IEC 60870-5-101/104 ASDU		col Version 4,	Src: 10.2.2.2	, Dst: 10.1	1.1.1	
		ISMISSION CO	ontrol Protoco	oI, Src Port: 2	2401, Dst P	Port: 1111, Seq:	130, Ack: 1, Len: 25
V IEC 00870-3-104	IEC 00870-3-104	leassembled	TCP Segments	(26 bytes): #12	2(1), #13(2)	25)	
✓ IEC 61883	IEC 61883 Protocol						

RF signal

Tetra for load shedding

Frequenz (Oberband)	MCC	MNC	LA	Air-Interface- Encryption	End-to-End- Encryption	Daten
426.6625 MHz	262	207	10085	nein	nein	IEC 60870-5-101
426.7125 MHz	262	207	10081	nein	nein	IEC 60870-5-101
427.2375 MHz	262	207	10080	nein	nein	IEC 60870-5-101
426.8875 MHz	262	168	4	nein	nein	IEC 60870-5-101

Digital, but not encrypted !

What's needed to control the grid in some areas?

software: same as for capturing

Hardware:

SDR-Transceiver + amplifier < 300 €

"criminal Energie"

Tetra backdoor

TETRA:BURST

- collection of five vulnerabilities
- two of which are deemed critical,
- affecting the Terrestrial Trunked Radio (TETRA) standard

used by

- law enforcement
- Military
- critical infrastructure
- industrial asset owners in the power, oil & gas, water and transport sectors and beyond.

- RF signals not protected
- Outdated Protocol used
- Mostly no encryption on protocols
- Broken protocols
- 3 RF stations for entire europe

Wind Energy

21

Wind energy

Satellite cyber attack paralyzes 11GW of German wind turbines

The communication channels affected are also used by photovoltaic systems.

MARCH 1, 2022 MARIAN WILLUHN

GRIDS & INTEGRATION TECHNOLOGY UTILITY SCALE PV GERMANY

ANTRAD

COMMODITIES NEWS FEBRUARY 28, 2022 / 5:49 PM / UPDATED A YEAR AGO

UPDATE 2-Satellite outage knocks out thousands of Enercon's wind turbines

By Reuters Staff

* Remote control of 5,800 wind turbines knocked out

https://www.reuters.com/article/ukraine-crisis-cyber-enercon-idAFL8N2V36NR

In the event of a communication breakdown, solar and wind power plants automatically switch to a kind of "autopilot."

Image: Matthias Böckel/Pixabay

https://www.pv-magazine.com/2022/03/01/satellite-cyber-attack-paralyzes-11gw-of-german-wind-turbines/

What happend

24.Febr 2022

- KA-Sat communication Satellite System belonging to ViaSat was hacked
- Collateral damage to around 5800 wind Turbines using KA-Sat for Internet access

19.Apr 2022 Over 95 per cent of WECs (<u>**W**</u>ind <u>**e**</u>nergy <u>**c**</u>onverters) back online

"A key challenge prevailing at the moment is the backup communication link that is missing from many wind farms"

https://www.enercon.de/en/news/news-detail/cc_news/show/News/over-95-per-cent-of-wecs-back-online-following-disruption-to-satellite-communication/

- SPOF no backup connection
- RF signals not protected
- Protocols with no security used

EV charging

25

Electrical vehicle charging

"charging must be as easy as refueling"

- massive build of infrastructure needed
- Electrical grid need improvement
- Various Payment systems in place
- Each CP needs Internet access

Cyber Security of charging points

Charging point cybersecurity

- Payment cards still insecure
- Easy to clone (for example with flipper zero)
- Wrong implementation of security measures
- No "security by design"
- Missing backend encryption
- And many other

An interesting one: reboot charging station and disconnect cars

Lets see some samples

Cyber Security of charging points

Selfmade Lockpick Set

open the lock

nothing protected

access to all Data

Public

List Logs for separate Download

Download all Logs

Private

Download Config File

File Upload

Restore Backup Config File

Cyber Security of charging points

ATQA: 0x0400 SAK: 0x08

Flipper one also works fine!

Whats wrong with the TCP/IP Stack?

Sending a crafted IP packets to chrash

communication between CP and backend mostly unencrypted

Latest Version 2.0.1 (March 2020) with first Security Implementations

But, Version 1.6 still minimum required Standard to implement

No need to upgrade existing Charging Stations

- Unsecure Protocols still standard
- Security by design is missing
- Outdated Protocol used
- Physical security needs improvement
- Wrong security configuration

Solar Power System

34

research

What is wrong here?

research

Power:	UW
Daily yield:	1497.7 kWh
Total yield:	5199.85 MWh
Language:	English 🗸
Password:	
Password:	

Try to logon with the hardcoded credential succeeded

And switch off Power production

city:

CWE-259: use of hardcoded Passwords

Description:

The product contains a hard-coded password, which it uses for its own inbound authentication or for outbound communication to external components.

Common consequence:

If hard-coded passwords are used, it is almost certain that malicious users will gain access through the account in question.

Likelihood of Exploit: high

Online solar systems

result from last year

TOTAL RESULTS

21,724

TOP COUNTRIES

More...

result from today

TOTAL RESULTS

16,721

TOP COUNTRIES

Portugal	4,740
Germany	3,666
Greece	2,185
France	696
United States	677

More...

query

Do some Shodan foo....

Remove home Solar devices (1 kWP -30 kWP)

Remove honeypots !

Include only vulnerable devices (1 MW – 5 MW)

#total ~2570

40

~2570 devices

~ 7200 MW worldwide

Filter out only Europe ~ 2800 MW

Interesting fact: some time after reporting to Vendor, numbers on Shodan massively decreased

// TOTAL: 2.570

Germany has 7000MW reserve (+CP)

destabilization with ~2800MW now possible

= not enough to directly force a blackout

But what,

if combined all together?

- Load shedding issues
- Solar power inverter
- Wind energy converter
- Home solar power inverter

- Code security and wrong configuration
- Security by design is missing
- Outdated Protocol used
- Proprietary radio signals used
- RF not protected

OSINT

OSINT – Open Source Intelligence

https://openinframap.org/

്

✓

~

1

Wenn Transparenz zum Problem wird

https://www.flosm.de

OSINT

Stromnetz 765kV (z.B. USA) 750kV (z.B. GUS) 420kV bis 650kV **√** ✓ 400kV (z.B. Frankreich) 380kV (z.B.Deuschland) 225kV bis 350kV 220kV (Westeuropa) 115kV bis 200kV 110kV (Verteilernetz Europa) 50kV bis 100kV 30kV bis 38kV 20kV bis 25kV (Überlandleitungen) 6kV bis 15kV (z.B. Eisenbahn Deutsch 1kV bis 5kV (z.B. Eisenbahn) 500V bis 950V (Oberleitungen, U-Bah

conclusion

We have seen samples of:

- 1. Code Security and misconfiguration
- 2. SCADA Systems
- 3. Remote Control
- 4. Physical location/security
- 5. Network or Data traffic
- 6. Internet connectivity

What to do?

Defense-in-depth strategy

Products does not protect you 100%.

threat intelligence together with products, tailored TI.

IT/OT security strategy

Train OT specialist on IT security and vice versa

Implement OT Security solutions like KICS for Networks

Thank you!

Stephan Gerling

Senior Security Researcher Kaspersky ICS-CERT

@obiwan666

kaspersky