Vortrag/Presentation:

EU-Horizon 2020 funded R&D project:

SHELTER: Sustainable Historic Environments hoListic reconstruction through Technological Enhancement and community based Resilience

Vienna, 29.09.2019, 14:40-15:00

Wiener Workshop: Wiederaufbau

Im Rahmen des Tags des Denkmals 2019 und anlässlich des Jubiläums Zwanzig Jahre Zweites Protokoll zur Haager Konvention

Termin/Date: 29. September 2019, 13 bis 17 Uhr
Ort/Location: Universität für angewandte Kunst Wien,
Universitätsgalerie, Heiligenkreuzer Hof, 1010 Wien

Prof. DI Johannes GÖLLNER, MSc & Prof. Dr. Friedrich SCHIPPER (Vorstandsvorsitzender, ZRK) (Leiter Fachbereich: Kulturgüter, ZRK)

excellent. connected. individual.

SHELTER Ambition & objetives

https://cordis.europa.eu/project/rcn/223273/factsheet/en

Source: based on Kick of meeting slides 13th & 14th June 2019, Bilbao-Derio, Spain, by

Day of Monuments - Wiener Workshop: Wiederaufbau, *September, 29th, 2019, Vienna, Austria*

SHELTER: Sustainable Historic Environments hoListic reconstruction through Technological Enhancement and community based Resilience

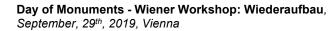
Union's Horizon 2020 research and innovation programme under grant agreement No 821282

Objective: Over the last decadOver the last decades, as a consequence of the effects of climate change, cultural heritage has been impacted by an increasing number of climate related hazards, posing new challenges to conservators and heritage managers.

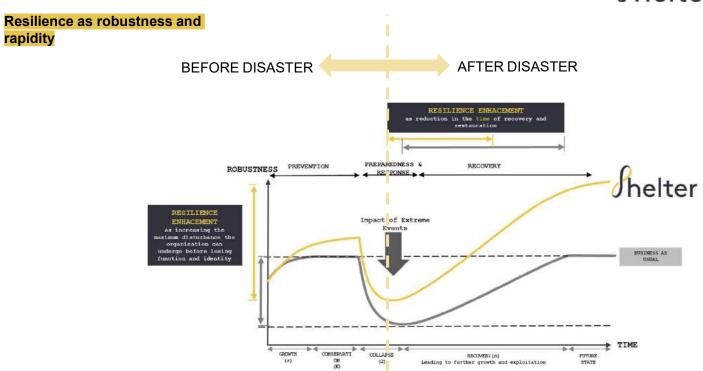
SHELTER aims at developing a data driven and community based knowledge framework that will bring together the scientific community and heritage managers with the objective of increasing resilience, reducing vulnerability and promoting better and safer reconstruction in historic areas.

- The first step to enhance resilience is associated to the improvement in understanding the direct and indirect impacts of climatic and environmental changes and natural hazards on historic sites and buildings, by linking concepts commonly used in disaster risk management and climate change adaptation with cultural heritage management, in order to provide inclusive and informed decision-making.
- Comprehensive disaster risk management plans need to be drawn up, based on the specific characteristics of cultural heritage and the nature of the hazards within a regional context, taking into account the diverse heritage typologies as well as the specific socioeconomic conditions, since this directly affect the vulnerability of such systems.
- By a deep understanding of the hazard, the exposure and the vulnerability of the historic area, the local dynamics and the provision of innovative governance and community based models, it is possible to provide useful methodologies, tools and strategies to enhance resilience and secure sustainable reconstruction.
- Due to the information complexity and the diverse data sources, **SHELTER framework will be implemented** in multiscale and multisource data driven platform, able to provide the necessary information for planning and adaptive governance.
- All the developments of the project will be validated in 5 open-labs, representative of main climatic and environmental challenges in Europe and different heritage's typologies.

 This project has received funding from the European



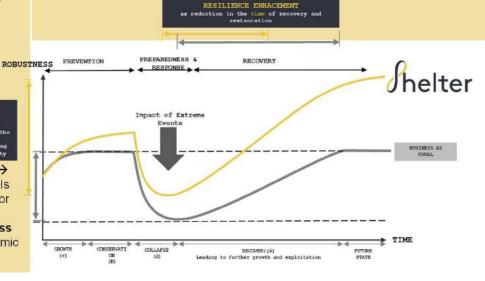
Topic: LC-CLA-04-2018: Resilience and sustainable reconstruction of historic areas to cope with climate change and hazard events


enhanced resilience of historic areas and improved sustainable reconstruction (building back better)

- Review, map and systematically characterize existing experiences and good practices
- Knowledge-and evidence-based approaches to increase costeffectiveness of activities from a life cycle perspective.
- Develop, deploy and validate tools, information models, strategies and plans
- Test and pilot novel cost-effective solutions while respecting historic value.
- Provide science and evidence-based guidelines and models to local authorities within a participatory and community-based approach.

Day of Monuments - Wiener Workshop: Wiederaufbau, September, 29th, 2019, Vienna

Resilience as robustness and rapidity


- By the identification and integration of multiple data sources & existing knowledge
- By systemic resilience/vulnerability assessment indirect and indirect impacts of events in CH assets
- By spatially explicit strategic decision-making tools → design of adaptation roadmaps
- REGILIENCE
 ENHACEMENT
 as increasing the
 maximum disturbance the
 organization can
 undergo before losing
 function and identity

 By community-based approaches
- new governance and business models

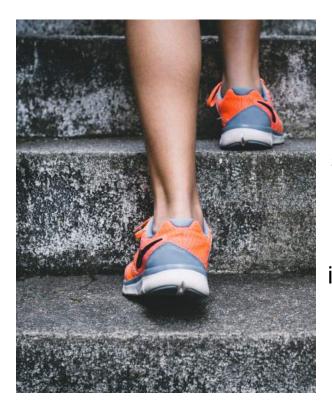
 By tested tools and technologies for
- resilience and reconstruction
 By methods to evaluate the real loss and damage costs assigning economic

value to CH assets

- By the Resilience dashboard (early warning systems + early damage assessment + crowdsourcing tools)
- By a **Resilience ID** documentation strategy
- By supporting stakeholders
- By conservation friendly measures for rapid stabilization and recovery
- By the codification of social memory and local knowledge

Day of Monuments - Wiener Workshop: Wiederaufbau, September, 29th, 2019, Vienna

resilience thinking represents a dynamic view of the future where risk, uncertainty and surprises are the norm and are used to build a more sustainable system and a system-wide transformation



a **change of paradigm**, where the disturbance is not an unexpected event anymore, instead it is foreseen, accepted and addressed for transformation

trigger the necessary systemic transformation linking sustainability, energy efficiency for affordable comfort, circular economy approaches and vernacular architecture with innovation in local economies, selforganisation and the activation of the territory

The objective of SHELTER is to establish

cross-scale, multidimensional, data driven and community based operational knowledge framework for heritage -led and conservation-friendly

resilience enhancement & sustainable reconstruction of historic areas to cope with climate change and natural hazards

Conservation-friendly resilience

- → combines elastic resilience (conservation of identity) with ductile resilience (transformation of the system) to ensure the balance between cultural identity preservation and adaptation to new requirements
- → taking into account the higher vulnerability of materials and structures, accessibility difficulties, density of the urban fabric, material and cultural values compatibility requirements and traditional lifestyles

Heritage-led resilience

→ that exploits the inherent resilience characteristics of HA: self-learning capacities, circular economy approaches, intrinsic sustainability, multi-stakeholder integration, redundancy, resourcefulness and flexibility

Multidimensional resilience → CH centered vision

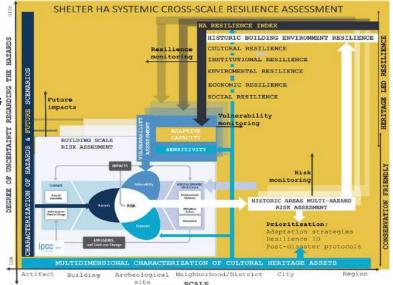
1	DIMENSIONS OF HA RESILIENCE	SHELTER APPROACH
Historic building	How the historic building environment addresses	SHELTER addresses specifically historic buildings physical vulnerability as a nested
environment	disruption, affordable comfort, structural security through	concept for a more general resilience and vernacular architecture as catalyser of a heritage-
resilience	traditional techniques, vernacular architecture and	led resilience where its intrinsic characteristics are capitalised (redundancy of parts,
	built/unbuilt environment relationships and its relevance as	reparability and reuse of components, traditional adaptation strategies) and its singularities
	container and management unit for other CH scales (as	contemplated for conservation-friendly planning. Singularity of HA: Very High
	movable CH)	
Cultural resilience	How HA addresses social inclusion and supports social and	SHELTER will consider CH (tangible and intangible) as key driver in HA Resilience.
	technical innovation through cultural identity, local	Cultural diversity has the capacity to increase the resilience of social systems, since it is the
	knowledge, intangible CH and openness to exploring novel	result of centuries of slow adaptation to the hazards that affect local environments.
	pathways.	Singularity of HA: Very High
Social resilience	How individual's physical and psychological well-being are	SHELTER will consider social memory as key part of HA resilience. Vulnerable groups
	addressed within the HA and strong and healthy personal	(elderly, migrants, children, disabled) will be specifically considered and gender
	relationships, connection to culture and nature and learning	perspective will be transversal. Issues especially important to HA as depopulation and
	and sharing new skills are enabled.	gentrification will be tackled in reconstruction phase. Singularity of HA: High
Governance and	How links and partnerships are created and managed with	SHELTER will adopt an adaptive governance perspective and a GLOCAL approach
institutional	support networks and across sectors (including public	(linking 'local' and 'global' tendencies and interpretations pragmatically). Open Labs will
resilience	sector/government, research and business)	function to integrate all stakeholders in the decision making and knowledge generation.
		Singularity of HA: High
Economic resilience	How the creation of a different sort of local economy can	SHELTER will foster local economy boosting and territory activation through innovation
	positively stewards the local environment and resources to	(including insurance perspective). Economic impact of disasters will consider intangible
	enhance biodiversity, cut carbon dependence and creates	values. Singularity of HA: Medium
Environmental	meaningful locally based livelihoods.	SHELTER will propose circular approaches and sustainable reconstruction. Singularity of
resilience		HA: Medium

Day of Monuments - Wiener Workshop: Wiederaufbau, September, 29th, 2019, Vienna

Multi-hazard resilience that takes into account different types of hazards and their combined direct and indirect impacts in the diverse types of CH (tangible, intangible and cultural/natural)

Type of event	Percentage distribution for relevant natural events in Europe and associated losses (1990 – 2017)								Regional	
	No. events	%	Overall losses (\$)	%	Insured losses (\$)	%	Fatalities	%	SHELTER Case study	representativ eness
Geophysical Earthquakes	97	4,30	57,39	11,50	3,36	2,10	1.023	0,70	Ravenna Seferihizar	Mainly Southern countries
Meteorological Storms	1.055	46,90	170,66	34,20	99,04	61,90	2.924	2,00	Dordrecht	Atlantic and boreal areas
Hydrological Floods	715	31,80	174,15	34,90	45,60	28,50	3.947	2,70	Dordrecht Sava river Basin	Central- Eastern Europe
Climatological Heat wave, Wildfire, Subsidence		17,00	37,43	7,50	12,00	7,50	138.289	94,6	Ravenna Seferihizar Baixa	Mediterranean areas
TOTAL	2.250		499,00		160,00		146.183			

Events in Europe and associated losses (1990-2017) (Data source: NatCatSERVICE database)


This project has received funding from the European


Union's Horizon 2020 research and innovation programme under grant agreement No 821282

Cross-scale and Life Cycle resilience

- →different temporal scales
- → the dynamic interplay between the different phases of DRM (prevention, preparedness, response, recovery, and adaptation)
- → their cross-scale configuration (from artefacts to transregional cultural landscapes)
- →the whole life cycle of the strategies and materials

...From building scale risk assessment to HA
RESILIENCE INDEX

data driven and community based resilience enhancement

as result of the interplay of two processes collaborating \rightarrow individual solutions for each HA:

- data driven approach > supports diagnosis, decision making, implementation and monitoring based on existing knowledge and heterogenous data
- Open Labs approach→ continuous framework for local knowledge extraction, citizen's engagement, co-creation, capacity building and innovation

Open Labs→ GLOCAL stakeholder-centred approach

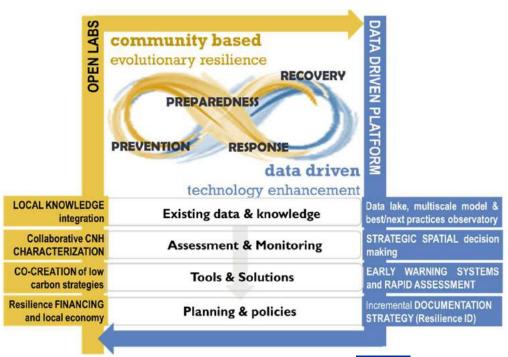
- · knowledge generator case studies
- · evaluation frameworks and demonstration sites
- · long-term thinking living- and transition labs
- · learning environments

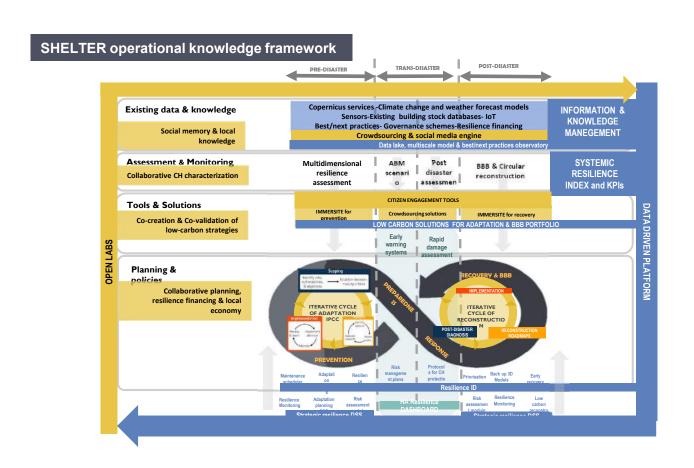
five case studies

			Area of Santa Croce.	Seferihisar	Dordrecht	Baixa Limia-Serra Do	Sava River Basin
			Ravenna	21.400	110.000	Xurés	0.000.000
Affected population by the case-study			5.000	31.400	118.000	1.614.535	9.000.000
Demo scales	Geographical zone (E		South	South-East	North	South-West	Central-East
Demo scales	Building District						
		ity					
	Region Cross-regional						
Hazards	Geophysical	Earthquakes					
	Meteorological	Storms					
	Hydrological	Floods					
	Climatological	Heat waves					
		Wildfire					
		Subsidence					
Governance &	Level of experience	in DRM instruments	High experience in Emergency	Medium. Heat wave warning	High. Protection plans local	Medium-High. Civil	High experience in
planning			Operative Plans	system and earthquake	and national protocols for	Protection Plan for forest fires	transboundary protocols
				recovery	evacuation		
	Experience i	n co-creation	Medium.	Medium.	High		High
СН	Type of CH		Immaterial, archaeological and	Immaterial, urban, earthen	Immaterial, urban and	Immaterial, natural and	Immaterial, natural and
			urban	architecture	industrial	cultural	cultural
	Level of protection		Very High	Medium	High	Medium	Medium
Existing data/	Level of information		Medium	Medium	High	High-medium	High-medium
tools	Туре		GIS, Cultural Heritage Catalogue	GIS, Cultural Heritage	GIS, Cultural Heritage	GIS geoportal and databases,	GIS geoportal, Flood risk
			and documentation, 3D model of	Catalogue, 3D model, data on	Catalogue, flood risk database	Cultural and Natural Heritage	maps & analysis, material
			the site, subsidence monitoring	protected area boundaries,	and monitoring, climate	catalogue and geoportal	studies, Digital Elevation
			(level, GNSS, interferometric)	mobile App. on Google Play	change impact analysis, 3D		Model based on LIDAR.
			(ave., Gross, intererometric)	moone App. on Google Play	models		hydraulic model

five Open Labs > committed to co-create

OPEN LAB	CODE	CO- CREATION STRATEGY TYPE	CASE STUDY	TOOLS	HAZARD	METHODS	
URBAN	U-TEC	Technological co- adaptation strategy	Ravenna	Stabilization and consolidation techniques	Earthquakes	Co-creation of specifications for the solution through the involvement of citizens and master students. International	
				Pumps	Subsidence	open call for suppliers	
	U-ICT	ICT solution co- creation strategy	Dordrecht	Tailored IMMERSITE solution	Floods/Storms	Co-creation and co-development of tailored citizen engagement tool (SHELTER)	
	U-VER	Vernacular co- adaptation	Seferihizar	Innovation in vernacular architecture	Earthquakes	Co-creation of solutions based on traditional skills through the involvement	
				Vernacular eco- rehabilitation	Heatwaves	of local research, academia and local business.	
CROSS- REGIONAL	CR-NBS	NBS co-creation strategy	Baisa-lima	Co-creation of NBS	Wildfires	Co-creation of NBS through the involvement of local research, academia and local business.	
	CR-GOV	Multilevel governance	Sava river	Co-creation of multilevel governance schemes for transnational HA.	Floods	Co-creation of collaborative governance schemes.	





SHELTER operational knowledge framework

Day of Monuments - Wiener Workshop: Wiederaufbau, September, 29th, 2019, Vienna

In summary...

Ambitious...

But doable!

Thank you for your attention. excellent. connected. individual.

Contact/Kontaktdaten:

Prof. DI Johannes GOELLNER, MSc

Head of

Research institute for Stragegy, Foresight, Risk and Innovationmanagement (ISFRI)

Department of Corporate Economy, Faculty of Economy and Administration, MASARYK University

CZ-60200 Brno, Lipova 41a, Czech Republic Mobil: +[43]-650-2252991

email: johannes.goellner@econ.muni.cz

Prof. Dr. Friedrich SCHIPPER

Leiter Fachbereich: Kulturgüter Zentrum für Risiko- und Krisen Management (ZRK) (Center of Risk and Crises Management-CRC) A-1180 Vienna, Reisnerstrasse 5/20a, Austria Mobil: +[43]-699-11444823

email: friedrich.schipper@zfrk.org

DI Johannes GOELLNER, MSc

Vorstandsvorsitzender/Chairman of the Board Zentrum für Risiko- und Krisen Management (ZRK)

(Center of Risk and Crises Management-CRC) A-1180 Vienna, Reisnerstrasse 5/20a, Austria Mobil: +[43]-650-2252991

email: johannes.goellner@zfrk.org

